1/16x^-2=x+15

Simple and best practice solution for 1/16x^-2=x+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/16x^-2=x+15 equation:



1/16x^-2=x+15
We move all terms to the left:
1/16x^-2-(x+15)=0
Domain of the equation: 16x^!=0
x!=0/16
x!=0
x∈R
We get rid of parentheses
1/16x^-x-15-2=0
We multiply all the terms by the denominator
-x*16x^-15*16x^-2*16x^+1=0
Wy multiply elements
-16x^2-240x-32x+1=0
We add all the numbers together, and all the variables
-16x^2-272x+1=0
a = -16; b = -272; c = +1;
Δ = b2-4ac
Δ = -2722-4·(-16)·1
Δ = 74048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{74048}=\sqrt{64*1157}=\sqrt{64}*\sqrt{1157}=8\sqrt{1157}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-272)-8\sqrt{1157}}{2*-16}=\frac{272-8\sqrt{1157}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-272)+8\sqrt{1157}}{2*-16}=\frac{272+8\sqrt{1157}}{-32} $

See similar equations:

| x-7/6=7 | | 20=11+4n | | x/4+3=83 | | 16x^-2=x+15 | | 16^-2=x+15 | | 21/3n+3n=4/5n+18 | | 5^(3x)=625 | | |x–1|=4 | | 9=4n-11 | | -2x-7=-3x+2 | | x2(x2-16)(25-x2)=0 | | (x+1)-(2x-4)=3x+1 | | 2x^2-33x+9=0 | | 12x+19=5x-2 | | x-18=36+72 | | x/7-5/14=1/2 | | x^2-20x=70 | | 10x=90-10 | | n^2-5n-52=0 | | 2r/5-1=3 | | z^2-2z=3 | | 3x+8=-4x+1 | | (2x-12)/3=2/3x-4 | | 3x+8=-4x1 | | 128=2x-10 | | (N-2)180=162×n | | 6/t-5/t+2=1 | | ((x)^(1/4))+((1/((x)^(1/4)))=2.5 | | 128+5x-3=180 | | x=3x-9÷2 | | 4+4x+2=90 | | x+3/4=x+1 |

Equations solver categories